Relations between the Local Chromatic Number and Its Directed Version

نویسندگان

  • Gábor Simonyi
  • Gábor Tardos
  • Ambrus Zsbán
چکیده

The local chromatic number is a coloring parameter defined as the minimum number of colors that should appear in the most colorful closed neighborhood of a vertex under any proper coloring of the graph. Its directed version is the same when we consider only outneighborhoods in a directed graph. For digraphs with all arcs being present in both directions the two values are obviously equal. Here we consider oriented graphs. We show the existence of a graph where the directed local chromatic number of all oriented versions of the graph is strictly less than the local chromatic number of the underlying undirected graph. We show that for fractional versions the analogous problem has a different answer: there always exists an orientation for which the directed and undirected values coincide. We also determine the supremum of the possible ratios of these fractional parameters, which turns out to be e, the basis of the natural logarithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On directed local chromatic number, shift graphs, and Borsuk-like graphs

We investigate the local chromatic number of shift graphs and prove that it is close to their chromatic number. This implies that the gap between the directed local chromatic number of an oriented graph and the local chromatic number of the underlying undirected graph can be arbitrarily large. We also investigate the minimum possible directed local chromatic number of oriented versions of “topo...

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

Hyperfiniteness and Borel Combinatorics

We study the relationship between hyperfiniteness and problems in Borel graph combinatorics by adapting game-theoretic techniques introduced by Marks to the hyperfinite setting. We compute the possible Borel chromatic numbers and edge chromatic numbers of bounded degree acyclic hyperfinite Borel graphs and use this to answer a question of Kechris and Marks about the relationship between Borel c...

متن کامل

On Numerical Investigation of Semi-empirical Relations Representing Local Nusselt Number at Lower Nozzle-target Spacing’s

Examining the cooling rate using impingement of air jet finds a wide application in electronic packaging and micro-scale fluid heat interaction systems, While the prediction of Nusselt profile at low nozzle-target spacing is a big issue. The plot of area average Nusselt number magnitude against the nozzle-target spacing (Z/d) shows a gradual decrement in the profile upto Z/d = 1 and beyond that...

متن کامل

Local chromatic number and the Borsuk-Ulam Theorem

The local chromatic number of a graph was introduced in [13]. It is in between the chromatic and fractional chromatic numbers. This motivates the study of the local chromatic number of graphs for which these quantities are far apart. Such graphs include Kneser graphs, their vertex color-critical subgraphs, the stable Kneser (or Schrijver) graphs; Mycielski graphs, and their generalizations; and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2015